ML_LEE_2022_hw6

Task introduction

  • GAN:project some random variables into specific space
  • 必須實作:DCGAN、WGAN、WGAN-GP
  • 產生1000張動漫人臉
    • <number>.jpg

Dataset

  • 從Crypko爬下來的
  • 71,314張pictures
    faces
    |
    |_0.jpg
    |_1.jpg
    |

Evaluation metrics

  1. FID score
  2. AFD rate,表示多少張圖片能被辯認為動漫頭像

Baseline


Simple:SAMPLE CODE(DCGAN) , train 1 hr
Medium:DCGAN with more epochs , train 11.5 hr
Strong:WGAN / WGAN-GP , train 2
3 hr
Boss:StyleGAN , train < 5 hr

Report Question

  1. 列出WGAN跟GAN的兩大差異
  2. 畫出WGAN跟WGAN-GP的gradient norm結果

Reference

WGAN & WGAN-GP

Style-GAN

link